Югорский физико-математический лицей

В.П. Чуваков

Задача Сб

(Теория чисел на ЕГЭ)

Учебно-методическое пособие

Ханты-Мансийск 2011

В.П. Чуваков

Задача С6 (Теория чисел на ЕГЭ): Учебнометодическое пособие, - Ханты-Мансийск, Югорский физико-математический лицей, 36 с.

В сборнике собраны задачи по теории чисел различной степени сложности, которые часто встречаются на предметных и вузовских олимпиадах по математике, ЕГЭ (задача Сб). Для решения большинства задач необходимо иметь первичные сведения, в том числе, и выходящие за пределы обычной школьной программы (свойства делимости, признаки делимости, сведения о простых числах, десятичное представление натуральных чисел, некоторые формулы и факты из теории чисел, свойства НОД и НОК).

К задачам приведены ответы и комментарии к решениям.

Пособие предназначено для углубленного изучения математики, подготовки к предметным олимпиадам и ${\rm E}{\rm \Gamma}{\rm \Theta}.$

Адресовано школьникам старших классов и преподавателям.

Задачи

- 1. Найдите все пары взаимно простых натуральных чисел a и b таких что, если к десятичной записи числа a приписать справа через запятую десятичную запись числа b, то получится десятичная запись числа $\frac{b}{a}$.
- **2**. Найдите хотя бы три десятичных числа, делящихся на 11, в записи которых используются все цифры от 0 до 9?
- **3.** Найдите все натуральные числа, которые делятся на 42 и имеют ровно 42 различных натуральных делителя (включая 1 и само число).
- **4.** Найдите все натуральные числа, последняя цифра которых равна 0 и которые имеют ровно 15 различных натуральных делителей (включая 1 и само число).
- **5.** Найдите все натуральные числа, которые делятся на 30 и имеют ровно 99 различных натуральных делителя (включая 1 и само число).
- **6.** Найдите все натуральные числа, которые делятся на 5600 и имеют ровно 105 различных натуральных делителя (включая 1 и само число).
- **7.** Натуральное число n имеет ровно 6 натуральных делителей (включая 1 и само число), сумма которых равна 104. Найдите n.
- **8.** Натуральное число n имеет ровно 6 натуральных делителей (включая 1 и само число), сумма которых равна 3500. Найдите n.

- **9.** Натуральное число n имеет ровно 9 натуральных делителей (включая 1 и само число), сумма которых равна 1767. Найдите n.
- **10.** Решите в натуральных числах уравнение $1 + 2! + 3! ... + n! = k^2$.
- **11.** Решите в натуральных числах уравнение $13 + 5n + n! = k^2$.
- **12.** Найдите все натуральные числа, являющиеся степенью двойки, такие, что после зачеркивания первой цифры их десятичной записи снова получается число, являющееся степенью двойки.
- **13.** Решите в натуральных числах уравнение x! + y! = (x + y)!.
- **14.** Решите в натуральных числах уравнение 2k! = m! 2n!.
- **15.** Решите в натуральных числах уравнение $n! + 4n 9 = k^2$.
- **16**. Найдите все пары пятизначных чисел (x, y) такие, что число \overline{xy} , полученное приписыванием десятичной записи числа y после десятичной записи числа x, делится на xy.
- **17**. Решите в натуральных числах уравнение $2xy = x^2 + 2y$.
- **18.** Решите в целых числах уравнение $m^4 2n^2 = 1$.
- **19.** Произведение нескольких различных простых чисел делится на каждое из этих чисел, уменьшинное на 1. Чему может быть равно это произведение?
- **20.** Натуральные числа m и n таковы, что $m^3 + n$ и $m + m^3$ делится на $m^2 + n^2$. Найдите m и n.

- **21.** При каком наименьшем натуральном n число 2009 не делится на n^n ?
- **22.** Найдите наибольшее натуральное n, для которого каждое из чисел k^k при k=1,2,...n является делителем числа 2013!.
- **23.** Найдите наибольшее натуральное число n, для которого число 2009 делится на каждое из чисел k^k при k = 1, 2, 3...n.
- **24.** Решите в целых числах уравнение $1 + 2^x = y^2$.
- **25.** Решите в целых числах уравнение $\sqrt{x-\frac{1}{5}} + \sqrt{y-\frac{1}{5}} = \sqrt{5}$.
- **26.** Найдите наибольший общий делитель всех чисел вида $p^2 1$, где p простое число, большее 3, но меньшее 2010.
- **27**. Решите в целых числах уравнение $3^{n} + 8 = x^{2}$.
- **28.** Решите в целых числах уравнение $2^n + 2^{2n} + 2^{3n} + ... + 2^{k \cdot n} = 2006$
- **29**. Решите в целых числах уравнение $3^n + 3^{2n} + 3^{3n} + ... + 3^{k \cdot n} = 2007$.
- **30.** Найдите пятизначное число, произведение которого с числом 9 есть пятизначное число, записанное теми же цифрами, но в обратном порядке.
- **31**. Найдите наименьшее натуральное число, первая цифра которого 1, а ее перестановка в конец числа приводит к увеличению числа в три раза.

- **32.** Одно из двух двузначных натуральных чисел в два раза больше другого. Найдите все пары таких чисел, если цифры меньшего из них равны сумме и разности цифр большего.
- **33.** Найдите все пары натуральных чисел, наименьшее общее кратное которых 78, а наибольший общий делитель равен 13.
- **34**. Решите в натуральных числах уравнение $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.
- **35.** Найдите шестизначное число, которое уменьшается в 6 раз, если три его первые цифры, не меняя порядка, переставить в конец числа.
- **36**. Найдите все натуральные числа, первая цифра которых 6, а при зачеркивании этой цифры число уменьшаются в 25 раз.
- **37.** Решите в натуральных числах уравнение xy = 13(x + y).
- **38**. Решите в натуральных числах уравнение xy = 17(x + y).
- **39.** Решите в натуральных числах уравнение $\frac{1}{m} + \frac{1}{n} = \frac{1}{25}$, где m > n.
- **40**. Решите в целых числах уравнение $\frac{1}{x} + \frac{1}{y} = \frac{1}{9}$ (x>y).
- **41**. Найдите все пары двузначных чисел (x,y) такие, что x простое меньше 20, а число xy + yx является полным квадратом.
- **42.** Все правильные несократимые дроби с двузначными числами в числителе и знаменателе упорядочили по

возрастанию. Между какими двумя последовательными дробями оказалось число $\frac{5}{8}$?

- **43.** Среди обыкновенных дробей с положительными знаменателями, расположенными между числами $\frac{96}{35}$ и $\frac{97}{36}$ найдите такую, знаменатель которой минимален.
- **44.** Решите в простых числах уравнение $p^6 q^2 = 0.5(p q)^2$.
- **45.** Решите в целых числах уравнение x! + y! = 10z + 13.
- **46.** Решите в целых числах уравнение x!+y!=10z+17.
- **47.** Решите в натуральных числах уравнение $n! + 4n 9 = k^2$.
- **48**. Решите в натуральных числах уравнение $12n!+11^n+2=k^2$.
- **49.** Множество A состоит их n натуральных чисел (n>7). Наименьшее общее кратное всех чисел равно 210, а $HO\mathcal{L}$ любых двух чисел из A больше единицы. Найдите эти числа, если произведение всех чисел из A делится на 1920 и не является квадратом никакого натурального числа.
- **50**. Найдите две последние цифры числа 11^{10} .
- **51.** Найдите последнюю цифру числа 2^{3^4} .
- **52.** Найдите две последние цифры числа 2^{999} .
- **53.** Докажите, что число $\underbrace{11....1}_{2n} \underbrace{22...2}_{n}$ является полным квадратом.

- **54**. Докажите, что число $\underbrace{11...1}_{100} \underbrace{55...56}_{100}$ является полным квадратом.
- **55.** Докажите, что число $(10^n + 10^{n-1} + ... + 10)(10^{n+1} + 5) + 1$ является полным квадратом.
- **56**. Найдите произведение двух трехзначных чисел, если оно втрое меньше шестизначного числа, полученного приписыванием одного из этих двух чисел вслед за другим.
- **57.** Решите в натуральных числах уравнение $k! = 5 \cdot m! + 12 \cdot n!$.
- **58**. Решите в натуральных числах уравнение $k! = 2 \cdot m! 7 \cdot n!$.
- **59**. Найдите все пары натуральных чисел a и b, удовлетворяющие равенству $a^b + 127 = \overline{ab}$.
- **60.** Найдите все пары натуральных чисел a и b, удовлетворяющие равенству $a^b + 320 = \overline{ab9}$.
- **61.** Найдите все пары натуральных чисел a и b, такие, что если к десятичной записи полученного числа a^2 приписать справа десятичную запись числа b, то получится число, большее произведения $a \cdot b$ в три раза.
- **62.** Найдите все пары натуральных чисел a и b, такие, что если к десятичной записи числа a приписать справа

десятичную запись числа b^2 , то получится число, большее произведения $a \cdot b$ ровно в семь раз.

- **63.** Решите в натуральных числах уравнение $3^m + 7 = 2^n$.
- **64.** Решите в натуральных числах уравнение $3 \cdot 2^m + 1 = n^2$.
- **65**. Решите в натуральных числах уравнение $[n \cdot \lg 2] + [n \cdot \lg 5] = 2010$, где [x] – целая часть числа x.
- **66.** Решите в натуральных числах уравнение $y^2 = 16 + z^x$, где z -простое число.
- **67.** Найдите наибольшую сумму значений параметров a и b, если известно, что числа $a, a \cdot b, \overline{ab} + 2b^2 b 20, \overline{ba} + 2b^3 10b 2$ образуют геометрическую прогрессию, причем $\overline{ab} + \overline{ba}$ квадрат натурального числа.
- **68.** Найдите наименьшую сумму значений параметров a и b, если известно, что числа 2a+2, 3b-3, $\overline{ab}+2b^2-7-2a$, $\overline{ba}+2+5a-6b$ образуют арифметическую прогрессию, причем $\overline{ab}-\overline{ba}-$ квадрат натурального числа и $a\neq 0$.
- **69.** Найдите все значения параметров a и b, при которых числа a, ab, $\overline{ab} + 2b^2 b 20$, $\overline{ba} + 2b^2 10b 2$ образуют геометрической прогрессию, а $\overline{ba} + \overline{ab}$ квадрат натурального числа.

- **70.** Найдите сумму квадратов всех значений параметров a и b, если известно, что числа 2a, 3b, $\overline{ab} 2a$, $\overline{ba} + 5a 6b$ образуют арифметическую прогрессию, причем $\overline{ab} \overline{ba}$ квадрат натурального числа.
- **71.** Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.
- **72.** Решите в натуральных числах уравнение $n^5 + n^4 = 7^m 1$

73. Докажите, что
$$\underbrace{33...3^2}_n = \underbrace{11...1}_n \underbrace{088...89}_n$$

- **74**. Докажите, что $\underbrace{33...34^2}_{n} = \underbrace{11...1}_{n+1} \underbrace{55...56}_{n}$
- **75.** Докажите, что числа 10017, 100117, 1001117, ... делятся на 53.
- **76**. Докажите, что число $\underbrace{11...1}_{n} \underbrace{211...1}_{n}$ составное.
- **77**. Докажите, что число $\sqrt{\underbrace{44...4}_{1980} 11 \cdot \underbrace{44...4}_{990} + 9}$ целое.
- **78**. Докажите, что если в числе 12008 между нулями вставить любое количество троек, то получится число, делящееся на 19.
- **79.** Известно, что числа $\overline{ab71}$ и $\overline{b71a}$ делятся на простое трехзначное число p. Найдите p,a,b.
- **80.** Установите, является ли дробь $\frac{19043}{20413}$ сократимой, и если является, то сократите ее.

- **81.** Найдите несократимую дробь $\frac{p}{q} = \frac{123456788...87654321}{1234567899...987654321}.$
- **82.** Найдите все значения n, при которых дробь $\frac{3n^3 8n^2 + 14n 8}{3n 5}$ сократима.
- **83.** Найдите все значения n, при которых дробь $\frac{5n^3 + 2n^2 4n + 28}{5n + 7}$ сократима.
- **84.** Найдите все значения n, при которых дробь $\frac{7n^2 + 11n + 4}{6n^2 + 5n}$ сократима.
- **85.** Известно, что дробь $\frac{m}{n}$ несократима, а дробь $\frac{5m-3n}{2m+5n}$ сократима. На какое число ее можно сократить?

Ответы:

- 1. a = 2, b = 5.
- 2. 95768432109873546210 9876513240
- 3. $2^{1}3^{2}7^{6}$, $3^{1}2^{2}7^{6}$, $2^{1}7^{2}3^{6}$,
- $3^{1}7^{2}2^{6}$, $7^{1}3^{2}2^{6}$, $7^{1}2^{2}3^{6}$.
- 4. 2500, 400.
- 5. $2^23^25^{10}$, $2^23^{10}5^2$, $2^{10}3^25^2$.
- 6. $2^65^47^2$, $2^65^27^4$.
- 7. 63.
- 8. 1996
- 9. 1225.
- 10. n = k = 3.
- 11. n = 2, k = 5.
- 12. 32,64.
- 13. x = 1, y = 1.
- 14. (1,2,3);(2,1,3);(3,3,4).
- 15. (2;1);(3,3).
- 16. x = 16667, y = 33334
- 17. x = 4, y = 8.
- 18. $n = 0, m = \pm 1$.
- 19. 6, 42, 1806
- 20. m = n = 1.

- 21. 47.
- 22. 46.
- 23. 46.
- 24. (3;3),(3;-3).
- 25. (1;2),(2;1).
- 26. 24.
- 27. $n = 0, x = \pm 3$.
- 28. n = 0, k = 2006.
- 29. n = 0, k = 2007
- 30. 10989.
- 31, 142857.
- 32. 34,17.
- 33. (13,78);(26,39).
- 34. (3,3,3); (2,4,4); (2,3,6).
- 35. 857142
- 36. $n = 625 \cdot 10^{k-2}$.
- 37. (182;14), (26;26).
- 38. (306;18), (34;34).
- 39. m=150, n=30, m=650, n=26.
- 40. (32;12), (90;10), (8;–72),
 - (6;-18),(-72;8),(-18;6).
- 41. 11,90,13,88,17,84,19,82

$$42. \ \frac{58}{93} < \frac{5}{8} < \frac{62}{99}.$$

43.
$$\frac{19}{7}$$
.

45.
$$x=1, y=2, z=-1;$$

 $x=2, y=1, z=-1.$

46.
$$x = 1, y = 3, z = -1; x = 3,$$

 $y = 1, z = -1.$

47.
$$n = 2, k = 1; n = 3, k = 3.$$

48.
$$n=1, k=5$$
.

53.
$$(\underbrace{33...3}_{n})^{2}$$
.

54.
$$(33...34)^2$$
.

55.
$$(\underbrace{33...3}_{n}4)^{2}$$
.

57.
$$k=17, n=m=16;$$

$$n = 5, k = 7, m = 6.$$

58.

$$k=n=3, m=4; k=m=7, n=6.$$

59.
$$a=1, b=28; a=14, b=1.$$

60.
$$a=3, b=2; a=97, b=2$$
.

61.
$$a = 1, b = 5 \cdot 10^{k-1};$$

 $a = 2, b = 8 \cdot 10^{k-1}.$

62.
$$a=1, b=2$$
.

63.
$$n = 4, m = 2$$
.

64.
$$n = 5, m = 3; n = 7, m = 4.$$

69.
$$a = 2, b = 9$$
.

72.
$$n=2$$
, $m=2$.

79.
$$p=101, a=7, b=1.$$

80. на 137;
$$\frac{139}{149}$$
.

$$81. \ \frac{11111111}{1111111111}$$

82.
$$n = 7t + 4$$
.

83. n = 11t + 3.

84. n = 2t; n = 11t + 1.

85. на 31.

Комментарии

- **1.** Пусть b n-значное число. Тогда $\frac{b}{a}=a+\frac{b}{10^n}$ и $10^n(b-a^2)=ab$. Далее, $(a,b)=1 \Rightarrow (b-a^2,ab)=1 \Rightarrow$ $b-a^2=1,ab=10^n \Rightarrow a=2^n,b=5^n \Rightarrow a=2,b=5.$
- **2.** Рассмотрим число N=9876543210 содержащее все цифры, но не делящееся на 11. У него сумма четных цифр равна 25, а сумма нечетных -20. Чтобы это число делилось на 11, надо переставить местами нечетную цифру p и четную цифру q так, чтобы 25-p+q-(20-q+p)=11. Т.е. q-p=3. Это варианты 8-5,6-3,4-1 и числа 957684321098735462109876513240 Можно начинать, например, с числа N=1234567890
- **3.** Если a делится на $42=2\cdot 3\cdot 7$, то $a=2^x\cdot 3^y\cdot 7^z\cdot p$, а число делителей a равно $N(a)=(1+x)(1+y)(1+z)(1+t)=42=2\cdot 3\cdot 7$. Но число 42 имеет только три множителя, поэтому p=1, а степени простых сомножителей равны одному из чисел 2,3,7. Возможны 6 вариантов: (1+x,1+y,1+z)- перестановка трех чисел (2,3,7).

- **4.** Решение аналогично предыдущему: a делится на $10=2\cdot 5 \Rightarrow a=2^x\cdot 5^y\cdot p$, $N(a)=(1+x)(1+y)(1+t)=15=5\cdot 3$. Число 15 имеет только два множителя, поэтому p=1, а степени простых сомножителей равны одному из чисел 5,3. Возможны 2 варианта: $a=2^2\cdot 5^4=2500$ $a=2^4\cdot 5^2=400$.
- **8.** Пусть $n=p_1^x p_2^y p_3^z$..., тогда число делителей числа n равно $N(n)=(1+x)(1+y)(1+z)...=6=2\cdot3$. Значит n имеет всего 2 простых делителя, степени 1 и 2. Сумма всех делителей числа n равна $(1+p_1)(1+p_2+p_2^2)=3500=4\cdot5\cdot25\cdot7$. Так как p_1,p_2-1 простые, то $p_1\neq 2,\ p_1+1-1$ четное, а $1+p_2+p_2^2-1$ нечетное. Возможны варианты: $(1+p_1)(1+p_2+p_2^2)=500\cdot7=100\cdot35=20\cdot175=28\cdot125=140\cdot25=700\cdot5$. В первом случае $1+p_1=500,\ 1+p_2+p_2^2=7\Rightarrow p_1=499,\ p_2=2,\ a$ в остальных случаях простых чисел с такими условиями не существует.
- **10.** Докажем, что n < 5. Если $n \ge 5$, то левая часть равенства $1 + 2! + 3! ... + n! \equiv 1 + 2! + 3! + 4! \pmod{5} \equiv 3 \pmod{5}$, а при делении на 5 правой части равенства (квадрата натурального числа) в остатке будет только 0,1,4. Осталось проверить числа n = 1,2,3,4.
- **11.** Докажем, что n < 5. Если $n \ge 5$, то левая часть равенства $13 + 5n + n! \equiv 3 \pmod{5}$, а при делении на 5 правой части равенства (квадрата натурального числа) в остатке может получиться только 0,1,4. Проверяем числа n = 1,2,3,4.

- **12.** Пусть $2^n = a \cdot 10^k + 2^m$. Если k = 1, то $2^n = a \cdot 10 + 2^m$. Это два числа: $2^5 = 30 + 2$; $2^6 = 64 = 60 + 2^2$. Если k = 2, то трехзначные степени двойки это числа 128,256,512, которые не являются числами требуемого вида. Если k = 3, то четырехзначные степени двойки это числа 1024,2048,4096,8192, которые опять не являются числами заданного вида. И так далее...
- **13**. Если x < y, то правая часть исходного равенства делится на x+1, а левая нет:

$$x!(1+(x+1)(x+2)...y) = x!(x+1)(x+2)...(x+y).$$

Значит $x = y \Rightarrow 2 \cdot x! = (2x)! \Rightarrow 2 = (x+1)(x+2) \cdots (2x) \Rightarrow x+1=2$. Почему других нет?

14. Запишем уравнение в виде 2(k!+n!)=m!. Отсюда следует, что $k \le n \le m$ или $n \le k \le m$.

Если n=k, то 4n!=m! и, разделив обе части на k!, получим 4=(n+1)(n+2)...m. Т.е. n+1=2 или n+1=4. Если n=1, то $4=m!(\varnothing)$, а если n=3, то $4\cdot 3!=m! \Rightarrow m=4$.

Если
$$k > n$$
, то $2k!(1+(k+1)\cdot(k+2)...\cdot n = m! \Rightarrow 2(1+(k+1)\cdot...\cdot n) = (k+1)(k+2)\cdot...\cdot m$.

Отсюда следует, что k+1=n=2 и тройка чисел (1;2;3), является решением, а, следовательно, и тройка (2;1;3) – решение.

Ответ: (3;3;4), (1;2;3), (2;1;3).

- **15**. Заметим, что n < 4, иначе при делении числа k^2 на 4 в остатке будет получаться число 3, а это невозможно. Если n = 1, то $1 + 4 9 = k^2 \Rightarrow \varnothing$. Если n = 2, то $2 + 8 9 = k^2 \Rightarrow k = 1$. Если n = 3, то $6 + 12 9 = k^2 \Rightarrow k = 3$. Ответ: (2;1), (3;3).
- **16**. $N = x \cdot 10^5 + y = (xy) \cdot p \Rightarrow y$ делится на $x \Rightarrow y = x \cdot n$. $x \cdot 10^5 + x \cdot n = (x \cdot xn) \cdot p \Rightarrow 10^5 + n = x \cdot n \cdot p \Rightarrow n$ делит 10^5 . Так как все числа пятизначные, то n—цифра и n = 2, 4, 5, 8.

Если n=2, то $10^5+2=100002=2\cdot50001=2\cdot3\cdot16667=2\cdot x\cdot p$. Так как все числа пятизначные, то возможен только один вариант: x=16667, y=2x=33334

Если n=4, то $10^5+4=100004=4\cdot25001=x\cdot2\cdot p$. Так как числа пятизначные, то вариантов нет. Аналогично разбираются случаи $n=5,\,8$.

17. Обыграем четность чисел:

$$2xy = x^{2} + 2y \implies x = 2p \implies 2py = 2p^{2} + y \implies y = 2k.$$
$$2pk = p^{2} + k \implies k = pt \implies pt = p + t \implies t = pn \implies pn = 1 + n \implies n = 1, p = 2.$$

18.
$$m^4 - 2n^2 = 1 \Rightarrow 2n^2 = m^4 - 1 \Rightarrow n - \text{ четное}, \text{ а} \ m - \text{ нечетное}.$$
 $m^4 + n^4 = n^4 + 2n^2 + 1 = (n^2 + 1)^2 \Rightarrow n^4 = (n^2 + 1 - m^2)(n^2 + 1 + m^2).$ Если $1 - m^2 < 0$, то $n^2 + 1 - m^2 < n^2$ и $n^2 + 1 + m^2$ делится на n^2 , а, следовательно, $1 + m^2$ должно делиться на 4, что невозможно. Следовательно, $1 - m^2 = 0 \Rightarrow m = \pm 1, \Rightarrow n = 0.$

- **19.** Пусть $N=p_1\cdot p_2\cdot ...p_n\div (p_1-1), (p_2-1), (p_3-1), ..., (p_n-1),$ где $p_1< p_2< p_3< ..< p_n$ —простые числа, причем, $p_1-1=1$, а $(p_2-1), (p_3-1), ..., (p_n-1)$ —четные числа. Значит $p_1=2,\ p_2-1=2, p_3-1=6, p_4=42 \Rightarrow N=2\cdot 3\cdot 7\cdot 43\cdot p_5...=$ $=1\cdot 2\cdot 6\cdot 42.(p_5-1).$ Так как p_5 —простое число, то p_5-1 —четное и может быть равно одному из чисел: $43\cdot 2, 43\cdot 3\cdot 2, 43\cdot 7\cdot 2, 43\cdot 21\cdot 2.$ Однако во всех этих случаях p_5 не является простым числом.
- **20.** Так как m, n- натуральные числа, то $m^2 > m$, $n^2 > n$. Если $m \le n$, то $n-m=(m^2+n^2)(p-q)$, однако число слева меньше n, а число справа больше n. Значит n-m=0. Далее, $n^3+n=2n^2\cdot p \implies n^2+1=2np \implies n=1$.
- **21.** Число n^n делит $2009=1\cdot 2\cdot 3\cdot ...\cdot 2009$, если в этом произведении встречаются числа $n, 2n, 3n, 4n,n \cdot n$. Так как $45\cdot 45=2025$, то при любом n<45 число n^n будет делить 2009. Пусть n=45. Тогда $45\cdot 44=1980$, поэтому 45^{44} делит 2009. Но $45=5\cdot 9$, поэтому 45^{45} тоже делит 2009. Пусть $n=46, 46\cdot 43=1978$ поэтому 46^{43} делит 2009. Но $46=2\cdot 23$ —составное, поэтому 46^{46} тоже делит 2009. Пусть n=47— простое число и $47\cdot 42=1974$, поэтому 47^{42} делит 2009, а 47^{47} уже не делит 2009.

- **22.** Доказательство аналогично предыдущему. Пусть n=45. Тогда $45 \cdot 44$ =1980 поэтому 45^{44} делит 2013. Но 45=5 \cdot 9, поэтому 45^{45} тоже делит 2013. Пусть n=46,46 \cdot 43=1978 поэтому 46^{43} делит 2013. Но 46=2 \cdot 23-составное, поэтому 46^{46} тоже делит 2013. Пусть n=47- простое число и $47 \cdot 42$ =1974, поэтому 47^{42} делит 2013, а 47^{47} уже не делит 2013.
- **24.** $2^{x} = y^{2} 1 = (y 1)(y + 1) \Rightarrow$ числа y 1, y + 1 степени 2, т.е. $y 1 = 2^{p}, y + 1 = 2^{p} + 2 \Rightarrow 2^{x} = 2^{p}(2^{p} + 2)$. Если $p \ge 2$, то $2^{x-1} = 2^{p}(2^{p-1} + 1) \Rightarrow 2^{p-1} = 1 \Rightarrow p 1 = 0 \Rightarrow p = 1 \Rightarrow 2^{x} = 8$.
- **25.** $\sqrt{5x-1} + \sqrt{5y-1} = 5 \Rightarrow \sqrt{5x-1} \le 5 \Rightarrow x \le \frac{26}{5} \Rightarrow x = 1, 2, 3, 4, 5.$

Решим уравнение $\sqrt{5y-1} = 5 - \sqrt{5x-1}$ при всех возможных значениях x и получим ответ.

- **26.** $p^2 1 = (p-1)(p+1)$, а p-1, p, p+1— три подряд стоящих числа, причем p— простое нечетное число. Поэтому p-1, p+1—два четных числа, причем одно из них делится на 3.
- **27.** Натуральное число x^2 при делении на 3 дает в остатке 0 или 1, а при n > 0 левая часть при делении на 3 даст в остатке 2. Значит n = 0, $x^2 = 9$.
- **28.** Одно решение получается сразу: n = 0, k = 2006 Докажем, что других решений нет. Если n > 0, то

$$2^{n}(1+2^{n}+...+2^{n(k-1)})=2\cdot 1003 \Rightarrow 2^{n}=2, 1+2+...+2^{k-1}=1003 \Rightarrow$$
 $\Rightarrow \frac{2^{k}-1}{2-1}=1003.$ Однако, последнее уравнение не имеет решений.

- **29**. Решение аналогично предыдущему: n=0, k=2010. При n>0, $3^n(1+3^n+...+3^{n(k-1)})=3\cdot 670 \Rightarrow 3^n=3, 1+3+...+3^{k-1}=670 \Rightarrow \frac{3^k-1}{3-1}=670$. Однако последнее уравнение не имеет решений.
- **30**. Пусть $n=\overline{abcde}$, $\overline{abcde}\cdot 9=\overline{edcba}$. Так как пятизначное число при умножении на 9 остается пятизначным, то a=1, а b=0 или b=1. При b=0

 $10cde \times 9 = edc01 \Rightarrow e = 9 \Rightarrow 10cd9 \times 9 = 9dc01 \Rightarrow 9d + 8$ оканчивается на $0 \Rightarrow d = 8$. Далее $10c89 \times 9 = 98c01 \Rightarrow 9c + 8$ оканчивается на $c \Rightarrow d = 7$. Если b = 1, то $11cde \times 9 = edc11 \Rightarrow e = 9$, 9d + 8 оканчивается на $1 \Rightarrow d = 7$. Далее, $11c79 \times 997c11 \Rightarrow 9c + 7$ оканчивается на c, однако таких чисел не существует.

- **31.** Пусть $n=1\cdot 10^m+x$, k=10x+1, $k=3n \Rightarrow 7x=3\cdot 10^m-1$, т.е. $3\cdot 10^m\equiv 1 \pmod{7}$. Если делить "столбиком" получим, то можно получить, что $300000=7\times 42857+1 \Rightarrow x=42857, n=142857$.
- **32.** n = 10a + b, m = 10x + y, $10a + b = 20x + 2y \Rightarrow 10a + b = 20(a b + 2(a + b) \Rightarrow 19b = 12a \Rightarrow \emptyset$.

Если $10a + b = 20x + 2y = 20(a + b + 2(a - b)) \Rightarrow 3b = 4a \Rightarrow b = 4, a = 3.$

33. $78=13\cdot 2\cdot 3$, а 13- простое число. Тогда возможны варианты: $a=13\cdot 3\cdot 2$, b=13; $a=13\cdot 2$, $b=13\cdot 3$.

34. Пусть
$$x \le y \le z$$
. $1 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le \frac{3}{x} \Rightarrow x \le 3, x \ne 1$.

1)
$$x=2 \Rightarrow \frac{1}{y} + \frac{1}{z} = \frac{1}{2} \Rightarrow y \neq 2$$
. Если $y=3$, то $z=6$. Если $y=4$, то

z=4. А если y=5, то $\frac{1}{5}+\frac{1}{z} \le \frac{2}{5} < \frac{1}{2}$. Значит, при x=2 других решений нет.

2)
$$x=3 \Rightarrow \frac{1}{y} + \frac{1}{z} = \frac{2}{3}$$
. Если $y=3$, то $z=3$. Если $y=4$, то

$$\frac{1}{4} + \frac{1}{z} \le \frac{2}{4} < \frac{2}{3} \implies \emptyset.$$

- **35.** Пусть $n = \overline{abcxyz} = \overline{p} \, q$, $m = \overline{xyzabc} = \overline{q} \, p$, $n = 1000 \cdot p + q$. Тогда $1000 \cdot p + q = 6(1000 \cdot q + p) \Rightarrow 994 \cdot p = 5 \cdot 999 \cdot q \Rightarrow 142p = 857q$. Так как, $(p, q) = 1 \Rightarrow q = 142, p = 857$.
- **36**. Пусть $n = \overline{6abc...} = 6 \cdot 10^k + p$.

Тогда $6 \cdot 10^k + p = 25p \Rightarrow 6 \cdot 10^k = 4p \Rightarrow p = 25 \cdot 10^{k-2} \Rightarrow n = 625 \cdot 10^{k-2}$.

37. $xy = 13(x + y) \Rightarrow xy - 13x - 13y + 169 - 169 = 0$.

$$(x-13)(y-13)=169 \Rightarrow x-13=169, y-13=1 \lor [-13=13, y-13=13.$$

39.
$$\frac{1}{m} + \frac{1}{n} = \frac{1}{25} \implies mn - 25(m+n) = 0 \implies (m-25)(n-25) = 625.$$

Так как m > n, то m - 25 > n - 25 и возможны варианты: m - 25 = 625, n - 25 = 1; m - 25 = 125, n - 25 = 25.

41. Пусть x, y — исходные числа. Тогда $100x + y + 100y + x = k^2 \Rightarrow 101(x + y) = k^2$. Из свойств делимости следует, что k делится на

101. Следовательно, $101(x+y)=p^2101^2$. Но x, y-двузначные числа, поэтому p=1, x+y=101. Ответ: (11;90), (13;88), (17;84), (19;82).

42. Пусть
$$\frac{m}{n} < \frac{5}{8} < \frac{k}{p} \Rightarrow 5n - 8m > 0, 8k - 5p > 0$$
. Будем искать

дробь, ближайшую к $\frac{5}{8}$. Разность между двумя дробями будет наименьшей, если числитель наименьший, а знаменатель - наибольший. Сведем все к решению диофантовых уравнений:

$$\frac{5n-8m}{8n} \Rightarrow 5n-8m = 1, 10 \le n \le 99 \Rightarrow n = 5+8t, m = 3+5t \Rightarrow t = 11, n = 93, m = 58;$$

$$\frac{8k - 5p}{8p} \Rightarrow 8k - 5p = 1, \ 10 \le p \le 99 \Rightarrow k = 2 + 5t, \ p = 3 + 8t \Rightarrow t = 12,$$
$$k = 62, p = 99.$$

43.
$$\frac{96}{35} = \frac{3456}{35 \cdot 36}, \frac{97}{36} = \frac{3395}{35 \cdot 36} \Rightarrow \frac{3395}{35 \cdot 36} < \frac{m}{n} < \frac{3456}{35 \cdot 36}$$
. Среди дробей,

знаменатель которых равен $35 \cdot 36 = 5 \cdot 7 \cdot 6^2$, выберем те, у которых числитель и знаменатель имеют общие множители (тогда можно будет сократить на этот множитель и уменьшить знаменатель).

Между числами 3395 и 3456 содержится только несколько чисел, пропорциональных 5,6,7: $3430=35\cdot98,3420=36\cdot95,3420=42\cdot81,$ $3444=42\cdot82$. Выпишем все дроби с этими числителями:

$$\frac{3420}{36 \cdot 35} = \frac{19}{7}, \frac{3430}{35 \cdot 36} = \frac{49}{18}, \frac{3402}{35 \cdot 36} = \frac{27}{10}, \frac{3444}{35 \cdot 36} = \frac{41}{15}.$$

44.
$$p^6 - q^2 = 0.5(p - q)^2 \Rightarrow 2p^6 - 2q^2 = p^2 - 2pq + q^2 \Rightarrow$$

 $3q^2=p^2-2pq-p^6.$ Отсюда следует, что простое число $\ p$ делит 3q, т.е. $\ p$ делит простое число 3 или простое число q. Но,

$$p \neq q(p^6 - p^2 \neq 0)$$
, поэтому $p = 3$, $3q^2 = 6q + 1449 \Rightarrow q = 23$, $q = 21$.

- **45**. Из уравнения видно, что правая часть всегда нечетная, а левая будет нечетной, если одно число больше единицы, а другое равно единице.
- Пусть $x=1 \Rightarrow y!=10z+12 \Rightarrow y < 5 \Rightarrow y=2, z=-1$. Если $y \ge 5$, то 12 разделится на 10 без остатка.
- **48.** Докажем, что $n \le 4$. Если $n \ge 5$, то левая часть уравнения $12n!+11^n-1+3=12n!+10(11^{n-1}+...+1)+3$ всегда даст в остатке 3 при делении на 5, а правая часть уравнения (квадрат натурального числа) при делении на 5 даст в остатке 0, 1 или 4. Рассмотрим все случаи: $n=1(12+11+2=25=5^2)$, а при
- 4. Рассмотрим все случаи: $n=1(12+11+2=25=5^2)$, а при $n=2,3,4(12n!+11^n+2\neq k^2)$,
- **49.** *НОК* всех чисел равно $210=2\cdot 3\cdot 5\cdot 7$, следовательно, простые делители 2,3,5,7 входят в разложение всех чисел в степени не выше первой. Если p- наименьшее число из A, то любое число из A имеет с $p\neq 1$ общий делитель. Произведение всех чисел не является полным квадратом и делится на $1920=2^7\cdot 3\cdot 5 \Rightarrow$ это числа 6,10,14,30,42,70,210,105. Набор

- 2,6,10,14,30,42,70,210 условию задачи не удовлетворяет (произведение этих чисел полный квадрат).
- **50.** Последняя цифра числа равна остатку от деления числа на 10. Найдем последнюю цифру числа $11^{10}-1$: $11^{10}-1=(11-1)(11^9+11^8+...+11+1)$. В этом произведении оба сомножителя делятся на 10, поэтому число $11^{10}-1$ оканчивается на два нуля.
- **51.** Последняя цифра числа 2^n изменяется циклически в зависимости от значения n:2,4,8,6,2... Найдем последнюю цифру числа $2^{3^4}: 2^{3^4}=2\cdot 2^{3^4-1}, 3^4-1=(9-1)(9+1)=80.$ $2^4=16$ $\Rightarrow 16^n$ оканчивается на $6\Rightarrow 2^{3^4-1}$ оканчивается на $6\Rightarrow 2^{3^4}$ оканчивается на 2.
- **52**. $2^{999} = \frac{2^{1000}}{2}$. Докажем, что $2^{1000} 1$ делится на 25.

 $2^{20}-1=(2^{10}-1)(2^{10}+1)=1025\cdot 1023\Rightarrow 2^{1000}-1=(2^{20})^{50}-1=(2^{20}-1)(....).$ Т.е. $2^{1000}-1$ делится на 25 и оканчивается на 00, 25, 75. Тогда 2^{1000} может оканчиваться на 01, 26, 76, но 2^{1000} делится на 4 и должно оканчиваться на 76. Вопрос: Назовите две последние цифры числа p, если известно, что 2p оканчивается на 76?

53.
$$\underbrace{11...1}_{2n} - \underbrace{11...1}_{2n} = \frac{10^{2n} - 1}{9} + 2\frac{10^n - 1}{9} = \frac{10^{2n} - 2 \cdot 10^n + 1}{9} = \frac{(10^n - 1)^2}{9}.$$

54.
$$\underbrace{11...1}_{100} \underbrace{55...56}_{100} = \underbrace{11....1}_{200} + \underbrace{44...4}_{100} + 1 = \frac{10^{200} - 1}{9} + 4\frac{10^{100} - 1}{9} + 1 =$$

$$=\frac{10^{200}+4\cdot10^{100}+4}{9}=\frac{10^{200}+2\cdot10^{100}+1+2\cdot10^{100}+2+1}{9}=$$

$$=\frac{(10^{100}+1)+2(10^{100}+1)+1}{9}=\frac{(10^{100}+2)^2}{9}. \text{ Наконец, } \frac{10^{100}+2}{3}=$$

$$=\frac{3\cdot10^{100}-3+9}{9}=3\cdot\frac{10^{100}-1}{9}+1=\underbrace{33...3}_{100}+1=\underbrace{33...34}_{100}$$

55. Домножим и разделим первую скобку на 9 = (10-1). Тогда

$$\frac{1}{9}(10^{n} + 10^{n-1} + ... + 10)(10 - 1)(10^{n+1} + 5) + 1 = \frac{1}{9}(10^{n+1} - 1)(10^{n+1} + 1)(10^{n+1} +$$

$$=\frac{1}{9}(10^{2n+2}+4\cdot10^{n+1}+4)=\frac{(10^{n+1}+2)^2}{9}=\left(\frac{10^{n+1}+2}{3}\right)^2.$$
 Остается

показать, что последняя дробь является целым числом:

$$\frac{10^{n+1}+2}{3} = \frac{10^{n+1}-1+3}{3} = \frac{10^{n+1}-1}{3}+1.$$

56. Пусть a, b – трехзначные числа, $ab = 3ab \Rightarrow 1000a + b = 3ab$. Отсюда следует, что $1000a = b \cdot (3a - 1)$ и 3a - 1 делитель числа 1000 Но $3a - 1 \le 300 - 1 = 299$ и 3a - 1 может быть равно 500 или 1000 Если 3a - 1 = 500, то a = 167, b = 2a = 334, $a \cdot b = 55778$

А уравнение 3a-1=1000 не имеет решений в целых числах.

57. Из уравнения $k!=5 \cdot m! + 12 \cdot n!$ следует, что k > m, k > n. Пусть $s=\max(m;n), k=.s+p$. Тогда $(s+p)!=5 \cdot m! + 12 \cdot n! < 17s!$ и (s+1)(s+2)...(s+p) < 17. Откуда следует, что p < 3, иначе

 $(s+1)(s+2)(s+3)>2\cdot 3\cdot 4=24.$ Рассмотрим два случая: p=1, k=s+1 и p=2, k=p+2.

A)
$$p=1, k=s+1, n=m=s \Rightarrow (n+1)n!=17n! \Rightarrow n+1=17, n=16.$$

B)
$$p=1, k=s+1, m=s > n \Rightarrow (m+1)m! = 5m! + 12n! \Rightarrow (m-4)m! = 12n!$$
.

Отсюда следует, что

$$m \ge 5$$
; $12n! = (m-4)m! > (m-4)(m)n! \Rightarrow 12 > (m-4)m \Rightarrow m = 5, m = 6.$

Если $m=5 \Rightarrow 12n!=5! \Rightarrow 12n!=120 \Rightarrow n!=10 \Rightarrow \varnothing$.

Если $m=6 \Rightarrow 12n!=2 \cdot 6! \Rightarrow n!=120 \Rightarrow n=5 \Rightarrow m=6, k=7.$

C)
$$p=1, k=s+1, n=s>m \Rightarrow (n+1)n!=5m!+12n! \Rightarrow (n-11)n!=5m!.$$

Отсюда $n \ge 11$; $5m!=(n-11)n!>(n-11)\cdot n\cdot m! \Rightarrow 5>(n-11)n \Rightarrow \varnothing.$

59. Пусть $a^b + 127 = \overline{ab}$. Если a = 1, то b = 28. Пусть $a \ge 2$. Если b < 9 (b - цифра), то $a^b + 127 = 10a + b$. Если b = 1, то a + 127 = 10a = 1. Отсюда, 126 = 9a, a = 14. Если $b \ge 2$, то $10a + b = a^b + 127 > a^2 + 127$. Отсюда получаем неравенство $a^2 - 10a + 118 \le 0$, которое не имеет решений в натуральных числах.

Докажем, что при $a \ge 2$ и b > 9 задача не имеет решений.

Пусть b-n – значное число

$$(10^n - 1 \le b < 10^n), \ a^b + 127 = 10^n \cdot a + b.$$

Тогда $a^b+127>a^{b-1}\cdot a>2^{b-1}\cdot a$, а $10^n+b<10^n+10^n<10^n\cdot 2a$. Отсюда, $2^{b-1}\cdot a<10^n\cdot 2a\Rightarrow 2^{b-1}<10^n$, где b-n – значное число. Докажем, что последнее неравенство не верно, т.е. $2^{b-1}>10^n$.

Так как, $b>10^{n-1}$, то $2^{b-1}>2^{10^n-2}$. Докажем, что $2^{10^n-2}>10^n$ при всех n>2. При n=2 неравенство имеет вид $2^{10^2-2}=2^8>10^2$, а при переходе к n+1 левая часть неравенства увеличивается в 2^{90} раз, а правая – только в 10 раз.

61. По условию задачи $\overline{a^2b} = 3a \cdot b$. Пусть b-n- значное число $(10^{n-1} \le b < 10^n).$ Тогда

$$a^2 \cdot 10^n + b = 3ab \Rightarrow a^2 \cdot 10^n = b(3a-1) < 10^n \cdot (3a-1).$$

Среди решений неравенства $a^2 - 3a + 1 < 0$ содержится только два натуральных числа a = 1 или a = 2.

Если a=1, то $10^n + b = 3b \Rightarrow b = 5 \cdot 10^{n-1}$.

Если a = 2, то $4 \cdot 10^n + b = 6b \Rightarrow 4 \cdot 10^n = 5b \Rightarrow b = 8 \cdot 10^{n-1}$.

62. По условию задачи $a\,b^2=7a\cdot b$. Пусть b-n- значное число $(10^{n-1} \le b < 10^n).$ Тогда $10^{2n-2} \le b^2 < 10^{2n} \Rightarrow \overline{ab^2} > a \cdot 10^{2n-1} \Rightarrow$ $\Rightarrow 7ab>a\cdot 10^{2n-1} \Rightarrow 10^{n+1} > 10b>7b \ge 10^{2n-1}$.

Неравенство $10^{n+1} > 10^{2n-1}$ справедливо только при n=1, т.е b — цифра и уравнение имеет вид $a \cdot 10^n + b^2 = 3 \, ab$; b=1,2,3,4,5,6,7,8,9; n=1,2. Если b=1, то $10a+1=3a \Rightarrow \varnothing$.

Если b=2, то $a\cdot 10+4=14a \Rightarrow 4\cdot a=4 \Rightarrow a=1$.

Аналогичным способом убеждаемся, что при b=3,4,5,6,7,8,9 уравнение $a\cdot 10^n+b^2=3ab$ не имеет решений в натуральных

числах. Например, при b=7, уравнение будет иметь вид $a\cdot 100+49=49a$.

- **63.** Из уравнения видно, что $2^n \equiv 1 \pmod{3}$, т.е. n четное число $(n = 2p \Rightarrow 2^{2p} = 4^p \equiv 1 \pmod{3})$. Далее, $3^m + 3 \equiv 0 \pmod{4} \Rightarrow m \text{четное}$ ($3^{2k} + 3 = 9^k + 3 \equiv 1 + 3 \pmod{4}$). Наконец, $3^{2k} + 7 = 2^{2p} \Rightarrow 7 = (2^p)^2 (3^k)^2 = (2^p 3^k)(2^p + 3^k) = 1 \cdot 7 = 7 \cdot 1$.
- **64.** $3 \cdot 2^m = n^2 1 = (n-1)(n+1)$ четное число, т.е. n нечетное число. Возможны два варианта представления нечетного числа.
- 1) n = 2p + 1,где p нечетное: тогда $3 \cdot 2^m = 2p(2p + 2) = 4p(p + 1)$. Так, как p нечетное, то p делит $3 \Rightarrow p = 1 \lor p = 3$. Если p = 1, то $3 \cdot 2^m = 4 \cdot 1 \cdot 2 \Rightarrow \varnothing$. Если p = 3, то $3 \cdot 2^m = 4 \cdot 3 \cdot 4 \Rightarrow m = 4$.
- 2) $n=2^k \cdot p+1$, где p- нечетное. Тогда
- $3 \cdot 2^m = 2^k \cdot p(2^k \ p+2) = 2^{k+1} \ p(2^{k-1} \ p+1)$. Отсюда следует, что $m = k+1, \ 3 = p(2^{k-1} \ p+1) \Longrightarrow p = 1, k-1 = 1, \ m = 3, \ n = 5.$
- **65.** Пусть $a=n\cdot\lg 2,\ b=n\cdot\lg 5.$ Тогда: a и b иррациональные числа; $a+b=n\cdot\lg 10=n;\ a=[a]+\{a\},\ b=[b]+\{b\}.$ Далее, $2010=a+b=[a]+[b]+\{a\}+\{b\},$ причем $0\leq\{a\}+\{b\}<2.$

Отсюда следует, что $0 \le \{a\} + \{b\} = 2010 - [a] - [b] = 2010 - n < 2$. Т.е. $\{a\} + \{b\} = 1$, n = 2011.

66. $y^2 = 16 + z^x \Rightarrow z^x = y^2 - 16 = (y - 4)(y + 4) = p \cdot (p + 8)$. Так как z – простое, то p = 1, либо $p = z^k$. Если p = 1, то $p + 8 = 9 = 3^2$, $y^2 = 16 + 9 = 25 = 5^2$.

Если $p=z^k$, то $z^x=z^k(z^k+8)$. Значит, простое число z в некоторой степени делит число $8 \implies z^k=2 \implies z^k+8=10$, что невозможно. Или $z^x=8 \implies z^k+8=16 \implies z^x=8\cdot 16=144=12^2$.

69. $\overline{ab} + \overline{ba} = \Gamma(a+b) \Rightarrow a+b=11$. Далее, знаменатель прогрессии равен $q = \frac{ab}{a} = b > 1$ (b- цифра). Из свойств прогрессии $a \cdot b^2 = 10a + b + 2b^2 - b - 20$, $a \cdot b^3 = 10b + a + 2b^3 - 10b - 2$.

Отсюда $(2-a)(b^2+10)=0$, $b^3(a-2)=a-2$. Так как a и b-1 цифры, то a=2,b=9. Обратно, если a=2,b=9, то исходная последовательность имеет вид $2,2\cdot 9,2\cdot 9^2,\ 2\cdot 9^3$.

- **70.** Если числа 2a, 3b, 10a + b 2a, 10b + a + 5a 6b образуют арифметическую прогрессию, то b = 2a. С другой стороны, a, b цифры, $a b \le 8$ и $ab ba = 9(a b) = p^2$. Отсюда $a b = 1 \Rightarrow a = 2, b = 2$ или $a b = 4 \Rightarrow a = 4, b = 8$, а сумма квадратов всех чисел равна 85.
- **71.** Пусть $N=a_na_{n-1}\dots a_2a_1$. В записи N не должно быть нулей или двух одинаковых цифр. Значит в записи N должно быть все 9 цифр, а наибольшее число такого вида N=987654321 Докажем, что N не делится на 11. Действительно, 9-8+7-6+5-3+3-1+1=5<11.

72. Справедливо равенство $n^5+n^4+1=(n^2+n+1)(n^3-n+1)$. Отсюда $7^m=(n^2+n+1)(n^3-n+1)$. Легко заметить, что при n=2 $n^2+n+1=7$, $n^3-n+1=7$, т.е. пара n=2, m=2 — решение. Докажем, что других решений нет. Пусть $n\geq 3$, тогда $n^2+n+1>1$, $n^3-n+1>1$ и $7^p=n^2+n+1$, $7^q=n^3-n+1$. Отсюда $7^p-1=n(n+1)$, $7^q-1=n(n^2-1)\Rightarrow 7^p-1=(7^q-1)\cdot k\Rightarrow q$ делит p. Т.е. $n^3-n+1=7^p=7^{q+1}=(n^2+n+1)^t$. Однако, $(n^2+n+1)^2>(n^3-n+1)$, т.е. 1< t< 2, однако это неверно. Следовательно, других решений нет.

73. Первый способ.

Второй способ.

$$\underbrace{33...3^{2}}_{n+1} = \left(\frac{10^{n-1} - 1}{3}\right)^{2} = \frac{10^{2n+2} - 2 \cdot 10^{n+1} \, 1}{9} = \frac{10^{n} - 1}{9} \cdot 10^{n+2} + 8 \cdot \frac{10^{n+1} - 1}{9} + 1 = \underbrace{11...100...0}_{n+1} + \underbrace{88...8}_{n+1} + 1.$$

74. Первый способ.

$$\underbrace{33...34^{2}}_{n} = \left(\frac{10^{n+1} + 2}{3}\right)^{2} = \frac{10^{n+2} + 4 \cdot 10^{n+1} + 4}{9} = \frac{10^{n+2} - 1 + 40 \cdot (10^{n} - 1) + 45}{9} = \frac{10^{2n+2} - 1}{9} + 40 \cdot \frac{10^{n} - 1}{9} + 5 = \underbrace{11...1}_{2n+1} + \underbrace{44...40}_{n} + 5 = \underbrace{11...155...56}_{n+1}.$$

Второй способ. Заметим, что если $x = \underbrace{33...34}_{n}$, то $3x = \underbrace{100...02}_{n}$, а

$$(3x)^2 = 100...0400...0$$

75. Первый способ.

$$x = 100\underbrace{11...17}_{n} = 1\underbrace{00...0}_{n+3} + \underbrace{11...1}_{n+1} + 6 = 10^{n+3} + \frac{10^{n+1} - 1}{9} + 6 = \frac{1}{9}(9 \cdot 10^{n+3} + 10^{n+1} + 53) = \frac{1}{9} \cdot (900 \cdot 10^{n+1} + 10^{n+1} + 53) = \frac{1}{9} \cdot (901 \cdot 10^{n+1} + 53) = \frac{1}{9} \cdot (901 \cdot 10^{n+1} - 1) + 954) = 53 \cdot \frac{1}{9} \cdot (17 \cdot (10^{n+1} - 1) + 18).$$

Второй способ. Пусть $b_n = 10011...17$. Тогда

$$b_{n+1} = 100\underbrace{11...17}_{n+1} = 100\underbrace{11...117}_{n+1} = b_n \cdot 100 + 17 = 100\underbrace{11...170}_{n+1} - 70 + 17 = 10 \cdot b_n - 53.$$

Отсюда следует, что если b_n делится на 53, то b_{n+1} тоже делится на 53. Так как $b_1 = 10017 = 53 \cdot 89$, то все доказано.

Третий способ. Из предыдущего

$$b_{n+1} - b_n = 9 \cdot b_n - 53 = 9 \cdot 10011...17 - 53 = 9 \cdot (10011...11 + 6) - 53 = 9 \cdot 10011...1 + 1 = 9 \cdot b_n - b$$

$$90099...9 + 1 = 90100...0 = 901 \cdot 10^{n+1} = 53 \cdot 17 \cdot 10^{n+1}$$

76.
$$\underbrace{11...1211...1}_{n} = \underbrace{11...100...0}_{n+1} + \underbrace{11...1}_{n+1} = \underbrace{11...1}_{n+1} \cdot \underbrace{100...0}_{n-1} 1.$$

Например, легко заметить, что при нечетных n последнее произведение делится на 11^2 .

77.
$$\underbrace{44...4}_{1980} - 11 \cdot \underbrace{44...4}_{990} + 9 = 4 \cdot \frac{10^{1980} - 1}{9} - 11 \cdot 4 \cdot \frac{10^{990} - 1}{9} + 9 = \left(\frac{2 \cdot 10^{990} - 11}{3}\right)^2$$

Далее,
$$\frac{2 \cdot 10^{990} - 11}{3} = \frac{2(10^{990} - 1) - 9}{3} = 2 \cdot \underbrace{33...3}_{990} - 3 = \underbrace{66...63}_{989}$$
.

Второй способ. Пусть a = 11...1.

Тогда
$$\underbrace{44...4}_{1980} - 11 \cdot \underbrace{44...4}_{990} + 9 = 4a(9a+1) + 4a - 44a + 9 = (6a-3)^2$$
.

78. Первый способ.

$$12033...308 = 12 \cdot 10^{n+3} + \frac{10^{n} - 1}{3} \cdot 100 + 8 = \frac{1}{3} \cdot (360 \cdot 10^{n+1} + 10^{n+2} - 100 + 24) = \frac{1}{3} \cdot (361 \cdot 10^{n+2} - 76) = 19 \cdot \frac{1}{3} \cdot (19 \cdot 10^{n+2} - 4) = \frac{19}{3} \cdot (19 \cdot (10^{n+2} - 1) + 15).$$

Легко заметить, что число в скобках делится на 3.

Второй способ. $a_1 = 120308 = 19.6332$ – делится на 19.

Пусть $a_n = 12033...308$. Тогда

$$a_{n+1} = 12033...308 = 12033...3000 + 308 =$$

=12033...3080+228=10· a_n +228=10 a_n +19·12. Так как a_1 делится

на 19, то для любого n a_{n+1} делится на 19.

79. $\overline{ab71}$ =1000· $a+\overline{b71}$, $\overline{b71a}$ =10· $\overline{b71}$ +a. Отсюда видно, что $\overline{ab71}$ ·10- $\overline{b71a}$ =9999a=9·11·101·a. Из свойств делимости следует, что это число должно делиться на трехзначное простое число p, a, значит, это число может быть равно только 101.

Далее, $\overline{ab71}$ =71+100· \overline{ab} =71- \overline{ab} +101· \overline{ab} . Из условия задачи следует, что число 71- \overline{ab} должно делиться на 101, а это возможно

только в случае $71 - \overline{ab} = 0 \Rightarrow a = 7, b = 1$.

80. Вычислим *НОД* этих чисел: $(20413,19043) = (1370,19043) = (1370,19043 - 1370 \cdot 13) = (1370,1233) = (137,1233) = (137,137 \cdot 9) = 137.$

81. Заметим, что
$$q - p = 11...100...0$$
, а $q - 10p = 11...1$. Отсюда

$$q-p=(q-10p)\cdot 10^8 \Rightarrow (10^9-1)p=(10^8-1)q \Rightarrow \frac{p}{q}=\frac{10^8-1}{10^9-1}$$
. To

82.
$$3n^3 - 8n^2 + 14n - 8 = (3n - 5)(n^2 - n + 3) + 7$$
.

Отсюда $(3n^3 - 8n^2 + 14n - 8, 3n - 5) = (7, 3n - 5)$. Так как число 7 - простое, то НОД этих чисел равен 1 или 7. В первом случае дробь несократима. Во втором, $7p = 3n - 5 \Rightarrow 3n = 7p + 5$.

Отсюда
$$n=2p+2+\frac{p+2}{3}$$
. Так как $n-$ целое, то $p=3k+1$,

$$n = \frac{7(3k+1)+5}{3} = 7k+4$$
. Other: $n = 7k+4$.

84. Дроь сократима, если $\frac{7n^2+1\ln+4}{6n^2+5n}=\frac{p\cdot m}{p\cdot k}$, т.е. у числителя и знаменателя есть общие делители. Заметим, что

$$\frac{7n^2 + 11n + 4}{6n^2 + 5n} = \frac{(n+1)(7n+4)}{n(6n+5)}$$
. Дробь будет сократима, если у

сомножителей в числителе и знаменателе найдутся общие делители. Вычислим НОД всех сомножителей:

$$HO\mathcal{A}(n+1,n)=1;\ HO\mathcal{A}(n,7n+4)=(n,4);$$

$$HOД(6n+5,n+1) = (-1;n+1) = (-1;n) = 1;$$

$$HOД(6n+5, 7n+4) = (5n+5, n-1) = (11, n-1).$$

Ответ: Если n=2p, то можно сократить на 2. Если n=11p+1, то можно сократить на 11.

Содержание

Задачи	3
Ответы	12
Комментарии к решениям	14
Содержание	35

Учебное издание

Задача Сб (Теория чисел на ЕГЭ)

Составитель

Чуваков Валерий Петрович (chv@uriit.ru)

Югорский физико-математический лицей г. Ханты-Мансийск, ул. Мира, 151